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Abstract—This paper provides an end-to-end solution to
defend against known microarchitectural attacks such as
speculative execution attacks, fault-injection attacks, covert
and side channel attacks, and unknown or evasive versions
of these attacks. Current defenses are attack specific and can
have unacceptably high performance overhead. We propose
an approach that reduces the overhead of state-of-art defenses
by over 95%, by applying defenses only when attacks are
detected. Many current proposed mitigations are not practical
for deployment; for example, InvisiSpec has 27% overhead
and Fencing has 74% overhead while protecting against only
Spectre attacks. Other mitigations carry similar performance
penalties. We reduce the overhead for InvisiSpec to 1.26% and
for Fencing to 3.45% offering performance and security for not
only spectre attacks but other known transient attacks as well,
including the dangerous class of LVI and Rowhammer attacks,
as well as covering a large set of future evasive and zero-day
attacks.

Critical to our approach is an accurate detector that is not
fooled by evasive attacks and that can generalize to novel zero-
day attacks. We use a novel Generative framework, Evasion
Vaccination ( EVAX) for training ML models and engineering
new security-centric performance counters. EVAX significantly
increases sensitivity to detect and classify attacks in time for
mitigation to be deployed with low false positives (4 FPs in
every 1M instructions in our experiments). Such performance
enables efficient and timely mitigations, enabling the processor
to automatically switch between performance and security as
needed.

Keywords-Hardware Security, Side channel, Generative Ad-
versarial Networks, Automatic Attack Sample Generation,
Adversarial Machine Learning Attacks, Automated Hardware
Performance Counter Engineering, Microarchitectural Attack
Detection, Linearized Neural Network, ML Interpretability,
Zero Day Attack Defense.

I. INTRODUCTION

The cost of Global Cybercrime is growing at a rate of

15% per year. The average cost of a data breach in 2020 was

$3.86 million with malicious Attacks being responsible for

52% of data breaches [3]. More than 100 Zettabytes of data

is distributed across clouds [3]. In 2018 with the disclosure

of transient (e.g., Meltdown [59] and Spectre [54]) attacks,

we learned that most processors currently in use are insecure.

Microarchitectural attacks can be extremely dangerous. For

example, transient attacks can compromise all secret data

on a system: they can leak arbitrary memory locations from

kernel or victim memory. Other attacks such as RowHammer

go beyond data confidentiality and break the integrity of

programs by inducing controlled memory errors in DRAM

cells [50] [38]. Most microarchitectural attacks can not be

fully mitigated in software. For example, studies have shown

that all currently deployed Rowhammer mitigations are still

vulnerable to attack [31] [21].

Microarchitectural attacks continue to emerge at a breath-

taking pace. Even worse, newly developed automated attack

generation tools can discover new vulnerabilities, challenging

existing defenses [34] [66] [30] [89]. Many of these generated

attacks have no mitigation [89], e.g. FlushConflict breaks even

the newest Intel Ice Lake and Comet Lake micro-architectures

which are hardened against Spectre and Meltdown.

Transient attacks, to pick an example class of microar-

chitectural attacks, target the foundations of hardware opti-

mization. Mitigating them fully leads to a significant trade

off between performance and security; e.g., 21% - 72%

performance overhead for the state-of-the-art HW mitigation

for Spectre-type attacks (InvisiSpec) and 74% - 204% for

Fencing [90]. The overhead for mitigating LVI attack is over

900% [87]. The number of known security vulnerabilities

caused by speculative execution has increased sharply in

recent years [15]. New variants of these transient execution
attacks undermine system security boundaries [14], [15],

[66], [79], [86], [87], [88]. Other variations exploit other

microarchitectural optimizations and their shared hardware

components [7], [8], [10], [26], [27], [35], [44], [46], [60],

[65], [70], [71], [74], [75], [78]. Defenses proposed to

date [22], [52], [56], [77], [90] only target specific attack

variants or protect individual microarchitectural components.

Complete protection requires multiple mitigations that are

active concurrently, imposing additive performance overhead



on the processor. This paper proposes an ML-assisted archi-

tecture that can detect attacks and apply targeted mitigations

only as needed significantly reducing their performance

overhead.

Currently, the average time to identify a data breach is 280

days [3]. The average cost savings of containing a breach in

less than 200 days vs. more than 200 days is $1.12 million

[3]. The propose detection architecture will be part of a

proactive and an adaptive end-to-end solution for security

closing the gap in detection and eliminating the significant

cost of reactive security response.

Detection of microarchitectural attacks poses several

challenges. Attacks can have short signatures. For example,

transient attacks trigger transient execution (using branch

prediction or out-of-order execution). During the transient

window, they complete their attack and leak secret data

to the attacker. Access to a high number of hardware

performance counters (HPCs) monitoring transient events

(uncommitted instructions) is essential. Lightning fast Sam-

pling and classification is essential for mitigations to be

applied prior to leakage. Finally, detection can be improved

by engineering new security-centric HPCs to detect new

attacks. Software detectors fail because the number of events

that can be monitored from software without multiplexing

counters is limited (up to 4). Computation is on the critical

path, limiting the sampling frequency and leaving software

detectors vulnerable to bandwidth evasion [58], [62]. On

the other hand, hardware detectors are promising due to

significantly higher sampling frequency and computations

being conducted outside the critical path [62]. We show that

prior work fails to detect evasive attacks and many novel

attacks, due to insufficient training data and dependence on

current HPCs which were designed for tuning performance.

We need to develop new security-centric HPCs that expose

features that promote accurate and rapid detection.

Perceptron-based detectors have been shown to provide

classification outputs within the transient window [62]

without computational delay. PerSpectron was able to negate

bandwidth evasion due to its high sampling frequency on

the order of 100 nsec to 1μ-sec [62]. However, PerSpectron

is limited in detecting zero-day attacks and is susceptible to

evasive attacks generated by new fuzzing technologies and

AML attacks [16], [30], [34], [48], [66], [89].

Attackers exploit pockets of adversarial space between

the data fitted by the learning agent and the theoretical

distribution space to fool ML (see Figure 1) . A large class

of vulnerabilities arise from the fundamental problems of

imperfect learning: (1) Ineffectiveness of classifier models to

contribute to the adversarial space; and (2) Flawed adversarial

space identification as a result of an imperfect training data

set [19]. We need automatic attack sample generation tools

to provide a broad range of possible permutations/variants

of microarchitectural attacks to train our classifier.

Prior works have proposed automatic attack code genera-

Figure 1. Root Cause of ML Vulnerability

tion techniques that attempt to create new attacks [30], [34],

[66], [89]. These transformations applied at the source or

binary level, include insertion, deletion, rewriting, and other

strategies, using a fuzzing-based approach. Fuzzing tools are

typically used to permute a single type of microarchitectural

attacks, for example, Meltdown or Rowhammer-type attacks.

Attacks generated by these tools do not comprehensively

explore the evasion space, missing a slew of potentialy

dangerous attacks or evasion strategies. This is because code

transformations [30], [34], [66], [89] do not automatically

translate to the complex feature space of the classifier.

Our solution— Disabling Adversarial ML Attacks by
Increased Classification Margin beyond the Leakage
Window. Evasive attacks exploit the minimum margins

from samples to classification boundaries (see figure 2). Rec-

ognizing that microarchitectural attacks are timing sensitive–

they rely on bringing the microarchitecture to specific state
during a short transient window and transferring the secret
before activity of other processes and kernel destroys its
footprints, our solution is to push the classification boundaries

in the worst adversarial directions until further attempts

to evade disables the attack. We do that by retraining the

classifier on a very large set of adversarial microarchitectural

samples automatically generated through a comprehensive

search using Generative Adversarial Networks (GANs) [33].

Figure 2. Large classification margin toward adversarial directions, to
disable timing-sensitive attacks.

Microarchitectural attackers can only leak data for a limited

time interval before the CPU eventually catches up, detects

the fault, or aborts transient execution. This implies that there



is only a limited transient window in which the victim can

leak data e.g., in LVI victim inadvertently computes on the

poisoned load values, and all required gadget instructions

need to complete within this window to transmit secrets.

The transient window is ultimately bounded by the size

of the processor’s reorder buffer (ROB). For example, our

experiments show adversarial ML efforts in systems with

small ROB fail to evade our detector. ROB size reflects the

boundary of transient window and is a property of system

that can be learned through self-supervised learning (e.g,

Generative Modeling).

We introduce the Evasive Vaccination framework ( EVAX)

which generates adversarial examples that push decision

boundaries in adversarial directions automatically. To identify

the adversarial directions we leverage Generative Adversarial

Networks (GANs). GAN contains two different networks;

a Generator and a Discriminator which play an adversarial

game against each other. In GAN, two models have opposite

agendas: discrimination and generation. During each step of

the training, the output of each model improves the other.

Because the training of the generator in GAN is toward

gradient descent (adversarial direction), retraining with the

generated examples that fool the discriminator, enlarges

the margins of decision boundaries to the point that code

transformations needed for evasion disable the attack. EVAX

can fine-tune the generation of new microarchitectural attack

samples to virtually infinite granularity.

In line with the ethical guidelines of Google’s SafeSide

project [2], EVAX aims to create attack samples that are

useful for training and analysis but cannot be weaponized by

attackers. EVAX Generated samples are vectors of microarchi-

tectural counter values. With no direct mapping between code

transformations and feature values an attacker cannot reverse

engineer attack code from our attack samples. In contrast,

the traditional automatic attack generation frameworks [30],

[34], [66], [89] can provide attackers with powerful tools to

compromise even a hardened system.

We also showed that when the counters representing the

inner-nodes of a Generator deep NN in GANs are combined

and moved to the input-layer, the accuracy of the linear

NN (fast and HW friendly) becomes equivalent to a deeper

NN. Interestingly, we concurrently observed and showed

empirically that the same property proved by the recent

GoogleMind study [57] exists in the systems ML field as well;

it proves that for wide NN the learning dynamics simplify

considerably and that in high width they are governed by

a linear model. Our finding gives an empirical equivalent

of their mathematically proven theorem while providing

a practical method to widen the NN automatically (see

Sec. VI of the paper). GoogleMind study, while proving it

theoretically, has not proposed a method/tool to automatically

widen the NN and make it linear. Our paper proposes an

effective and automated strategy to select highly correlated

internal signals of DNN and combine them into one as an

input node, to design fast and HW-friendly ML for solving

complicated problems. This simplification of NN can also

make DNN more interpretable. This equivalence can actually

be represented mathematically but it is beyond the scope of

this paper.

This paper makes the following important contributions:

• Selectively triggering defenses, which reduces the over-

head of state-of-the-art defenses such as InvisiSpec

(from 27% to 1.26%.) and Fencing (74% to 3.46%),

making them practical for deployment.

• It demonstrates a robust end-to-end defense system for

19 categories of microarchitectural attacks. Many have

no mitigation and have not been previously detected.

• It presents an automatic method for engineering new

security-centric HPCs.

• It provides a generative framework for automatically

generating microarchitectural samples of attacks of a

given type covering a broad range of microarchitectural

attacks.

• It presents a novel training method that disables powerful

Adversarial ML Attack and defends against automat-

ically generated attacks from fuzzing tools (23.5%

improvement).

• Shows effectiveness for Zero-Day attack detection with

a 10.8% accuracy improvement over the state-of-the-art.

• Proposes a new metric to verify, interpret, and visu-

alize the state of microarcitectural attacks as well as

correctness and quality of the attacks generated.

II. BACKGROUND

In this work we focus on detection of Microarchitectural

side channel attacks and memory attacks such as RowHam-

mer.

Side Channel Attacks. Non-Transient side-channel

attacks include flush-based attacks such as Flush+Fush [39],

Flush+Reload [91]. Conflict-based attacks such as

Prime+Probe [61] and Evict+Time [70], as well as attacks

on other microarchitectural structures such as the branch

predictor [7], [25]. Transient attacks consist of a leakage

gadget and a transfer gadget. The leakage gadget can be

either fault-based such as Meltdown [59], Zombieload [79],

LVI [87] and Fallout [14], or Speculation based such as,

SpectrePHT [54], SpectreBTB(or SpectreV2) [15], [54],

SpectreRSB [55] and NETSpectre [80]. Transient attacks use

techniques from the non-transient attacks as their transfer

gadget. Transient attacks have the capacity to leak arbitrary
memory from a victim process and can even dump the

whole kernel or victim memory. Transient attacks such as

Meltdown and Spectre leverage Out of Order Execution

(OOO) and Speculative Execution to leak data during the

transient speculation window, breaking memory isolation.

Example of exploitable Performance Optimization prop-
erties: The Branch Predictor predicts which direction and



target of a branch should be taken. The Front-end fetches

the instrucions and decodes them to micro-operatons (uOP).

Instructions are speculativly executed on the predicted path,

enabling run ahead to fill up the idle execution units and hide

memory access latency. If the branch prediction was incorrect,

the ROB allows rollback to the correct state. The Scheduler

allows the CPU to use data values as they become available

and renames registers to solve RAW, WAR and WAW hazards.

The ROB keeps track of all uOps with respect to the

instruction stream. We can load caches during speculative

execution. The Address Generation Unit (AGU) load and

store units are directly connected to the memory subsystem

to process its requests. Inaccessible data is provided before
interrupt flags and during wrong paths.
Transient Attack Examples. In a Meltdown attack the

attacker: 1) flushes the memory space in the cache; 2)

performs a Syscall/prefetch to have the kernel address loaded

in L1 cache; 3) Loads the secret to a register R; 4) fills

the ROB with dependent instructions which use a different

execution unit; 5) Issues a transient load to an address,

indexed by the content of Register; and finally 6) Measures

the time of Reload. Main phases in Spectre-PHT are: 1)

Attacker Flushes the accessible cache lines; 2) Mistrains the

branch predictor to make a wrong prediction; 3) Performs

a transient access to inaccessible data; and 4) Times the

access to the monitored line. Even if the processor prevents

speculative execution of instructions in the user process

access the kernel memory, the Spectre attack still works.

Memory Attacks - Rowhammer compromises data integrity

rather than confidentiality. DRAM cells leak charge over time

and must be periodically refreshed to prevent data corruption.

Attackers can exploit the shared DRAM buffer to not only

construct a side channel (DRAMA [74]) but also amplify

the data corruption and cause bit flips in targeted memory

pages (Rowhammer [50]), compromising OS and browser

security [29], [37], [38]. Recent mitigations are shown to be

not fully effective against Rowhammer [21], [31]

LVI - In LVI [87], first the adversary injects its data. The

victim loads this data and stores it in a microarchitectural

buffer. The load whose translation takes long time to

settle and thus the stored adversary data gets forwarded

speculatively. When the recovery happens, victim’s secret is

inferrable by accessing microarchitectural buffers. Flushing

shared buffers, software patches, microcode mitigations,

Spectre hardware mitigations and constant time programming

[17] all fail to mitigate LVI. The only current mitigation

fences on every load which is reported to have a 900%

overhead [87].

Why Transient Attacks Can be Detected in Microarchi-
tectural Layer. We observe that each attack phase leads to

misuse or under utilization of processor resources which is a

direct side effect of bringing the microarchitecure into a state

of leakage and recovery, making these invariant features for

leakage. The processor has HPC’s built in for debugging,

verification and optimization purposes which monitor events

occurring in processor resources. Affected resources include

the execution engine, branch predictor, TLBs, caches, MMU

caches, buses, buffers, cache coherency, power and more.

Flags of activities in the system propagate up and down the

pipeline (e.g., stalls or transient instructions travel down the

pipeline) and can be detected by monitoring different events

affecting these resources.

III. RELATED WORKS

Current Mitigations & their Overhead. InvisiSpec [90]

adds a separate speculative buffer for placing the speculative

load data until it is safe to be visible. InvisiSpec suffers from

high overhead (27%). Fencing speculative loads to defend

against Spectre attacks, have over 70% overhead. Utilizing

microcode-level optimizations to surgically inject specialized

fences [84] mitigates some variants of Spectre attack but does

not mitigate the dangerous MDS and LVI attacks. Fencing

all loads, suffers from high performance overhead of up

to (900%) [87]. In this work we reduce these overheads

drastically, by 95% or more, while providing full defenses

for even larger spectrum of attacks than individual patches.

With reduced overhead, these mitigations become feasible,

providing security in an elastic way to the microarchitecture.

SW Detectors. Malware detectors from SW layer are

unable to detect microarchitectural attacks because mi-

croarchitectural attack signature are fundamentally different

than Malware [62]. Prior works used features related to

committed state such as instruction mixes or memory access

distribution. Detection of transient attacks requires access

transient features. SW can only monitor 4 HPCs at a time

without multiplexing counters. This provides opportunity for

attacker to evade detection. SW detectors have low sampling

frequency (100ms vs ns in HW) making them vulnerable to

Bandwidth evasion. [58] Sampling and computation happen

on the critical path leading to high overhead. And thus, prior

work in SW detection fails to detect stealthy transient attacks.

[58], [62]. Therefore, in this work we focus on HW-based

detection of transient attacks.

Static/Non-ML detections. Prior work in HW based detec-

tion has followed two general approaches: (1) Static-signature-

based detection similar to Cyclone [40] and (2) anomaly

detection using ML similar to [62]. Static-signature-based

detection, detects static properties for example Cyclone [40]

detects contention-based cache attacks by tracking the cyclic

interference property in hardware. Cyclone can only detect

two types of microarchitectural cache attacks (Flush+Reload

and Prime+Probe).

Cyclone detects after leakage while ML-based approaches

detect attacks prior to leakage. [62] ML-based approach can

generalize to new attacks because it is focused on system
properties looking for activities that are anomalous with

respect to normal system behaviour unlike static-signature-

based detection.



PerSpectron. Recent work has demonstrated success at

detecting microarchitectural attacks in hardware with low

performance overhead [62]. While software detectors are

vulnerable to bandwidth evasion techniques, detection in

HW is resilient to such evasions [62]. Due to their ef-

ficacy, manufacturers are beginning to support Hardware

Malware Detectors (HMDs) to mitigate threats such as

Ransomware [6] and malicious mobile apps [5]. PerSpectron

utilizes a single layer perceptron in hardware to monitor 106

features spanned over the processor i.e., replicated detectors

in the processor to detect seen Spectre-PHT, Spectre-RSB,

Meltdown, Prime+Probe, Flush+Reload, Flush+Flush attacks

and CacheOut, Spectre-BTB out of sample.

Perceptron is fast and HW friendly. But can only learn

linear separable functions. This problem exacerbate when

trying to learn many novel categories/classes of attacks

e.g., new LVI type attacks, with one structure. This work

extends the number of novel attacks from 7 to 19 while

increasing the overall detection accuracy. PerSpectron is

also susceptible to AML attacks. In this work we propose

an adversarial hardening methods that makes PerSpectron

resilient to adversarial attacks. ML based detectors [62]

can also be tuned to increase sensitivity to detect several

microarchitectural attacks. One major issue with PerSpectron

is high false positives and vulnerability to new Evasive

technologies.

ML Related Studies. Augmenting the training dataset has

been used to increase the accuracy of a model. [9] Shows

that SNN can achieve same accuracy as DNN when trained

with data generated by DNN using model compression.

[12] uses GAN data augmentation for robotic grasping.

[24] Conditional RGAN used to generate synthetic medical

records for training physicians. However [32] suggests

that linear models lack the capacity to resist adversarial

perturbation. We show that not to be the case. [64] shows

that virtual adversarial training efficiently moves decision

boundaries in the adversarial direction. [67] demonstrated

that iterative linearization of the classifier can generate mini-

mal perturbations that are sufficient to change classification

labels. [69] suggest SSL when there are no high-quality

labeled datasets from similar domains to use for fine-tuning.

[72] discussed a number of methods for injecting adversarial

examples during training to improve the generalization of

a machine learning model. [83] Google improved image

recognition with deep CNN. [72] used GAN to improve

student/teacher network learning. Apple, Google and other

researchers have used virtual adversarial training to improve

ML models [49], [69].

IV. THREAT MODEL

We assume the following: (1) A machine with a Hardware

Malware Detector (HMD) trained to detect microarchitectural

attacks similar to PerSpectron [62]. (2) An attacker with

access to a similar detector, capable of using it to craft and test

Figure 3. EVAX AM-GAN Training Diagram

evasive attacks. (3) We assume no specific evasion strategy;

i.e., we assume no limits on how the attacker chooses to evade

provided the program is legal and the attack is preserved. The

attacker could be using arbitrary methods to evade signature-

based detectors, including those developed in the malware

community [4], [54] or fuzzing based approaches [30], [66],

[89].

V. EVAX

A. Training Generative Modeling Framework
The Goal. The goal of EVAX is to develop a detector

that generalizes across a large number of seen and unseen

microarchitectural attacks and is also resilient to evasion.

Recall that adversarial algorithms aim to generate a single

example that fools the detector for a given input and

potential target class; typically, the algorithm determines

an effective perturbation pattern that guides the input across

the classification boundary to cause it to be misclassified.

We would like to automatically generate attack samples

that represent the feature map for these undisclosed or

undiscovered variations of attacks. These samples will harden

our detector and sharpen its classification boundaries making

it resilient to evasion.

Our Solution. To solve this problem, we use a training pro-

cess with a (GAN)-based game. The idea is that since GANs

can generate realistic instances of data that no one has seen,

vector representations of these instances can also be used to

describe evasive or undisclosed variations of attacks. GANs

improve the training process by turning the attack generation

problem into a self supervised learning problem between

two sub-models, a Generator and a Discriminator. The two

sub-models are trained together in an adversarial game. The

Generator learns the domain specifics automatically through

playing the game with the Discriminator instead of training

on limited data. In a traditional attack detector, the classifier

learns from input/output data; therefore, the classification

ability is limited to seen data points. But GAN does not learn

from an input/output data mapping to tell the model how

it should generate an attack. The Discriminator, in contrast

to the classifier in conventional detectors, learns how inputs

and outputs can be paired in a microarchitectural system,



1: procedure VACCINATEHARDWAREDETECTOR(S′)
2: procedure AM-GAN TRAINING( )
3: while Generator is improving do
4: for each training iteration do
5: [x, c , t]← get sample [S] � x is a sample � t ∈ target malicious/safe � c is attack’s type � S is the training set
6: procedure DISCRIMINATOR TRAINING( ) � Train the discriminator to distinguish between real and generated data.
7: y← Discriminator (x,c) � y is 1 for real and matching , 0 for fake
8: dx← t-y � dx is discriminator’s error
9: z← RandomNoise(145) � z is a noise vector for 145 features

10: x�← Generator (z,c) � x� is adversarial/fake example
11: y�← Discriminator (x�) � y� is 1/0 for real and matching/fake
12: dy� ← y�-y � dy� is discriminator’s error
13: Update(Discriminator , dy� +dx , c) � Update the discriminator’s weights seeking to minimize dx +dy�

14: procedure GENERATOR TRAINING( ) � Train the generator to output data that ”fools” the discriminator
15: z← RandomNoise(145) � z is a noise vector for 145 features
16: x�← Generator (z , t , c) � x� is adversarial/fake example
17: y← Discriminator (x�) � y is 0/1 for fake, unmatching/real and matching pairs
18: dx� ← t-y � dx� is Discriminator’s error
19: Update(Generator , dx� ) � Update the generator’s weights seeking to maximize dx�

20: procedure AUTOMATIC ATTACK GENERATION(c′, t ′))
21: l← [c′, t ′] � t ′ ∈ desire target malicious/safe � c′ is desired attack’s type, 0 if safe
22: z← RandomNoise(145) � z is a noise vector for 145 features
23: x′ ← Generator(l,z) � Generate an attack for label l, x′ is the generated attack sample
24: S′ ← add(x′,c′, t ′) � S′ is the augmented training set
25: for each training iteration do � Generate a batch of new attacks
26: [c′, t ′]← get label [S] � Iterate through label list
27: AutomaticAttackGeneration(c′, t ′) � Generate new attack for type c′ and target t ′

Figure 4. EVAX Training algorithm.

and it tells the model whether it was correct. Because of this,

the Generator ultimately learns a broad range of the possible

correct answers

This is an important principle of our design and the key

reason for EVAX’s high effectiveness.

The Game Setup. Our Discriminator in this game has the

architecture of our hardware detector. We start with a single

layer perceptron-based classifier similar in architecture to

PerSpectron [62]; however, this technique would generalize

to any ML-based detector. Our Generator is a deep neural

network, which creates an unusual asymmetry between

the Generator and Discriminator. We will label this an

Asymmetric Model GAN (AM-GAN). As the adversarial

game unfolds, the Generator learns each time a sample

fools the Discriminator. Instead of recognizing a pattern,

the Generator learns to create attack samples essentially

from scratch; indeed, the input into the Generator is mainly

a (noise) vector of random numbers, the feedback from

the Discriminator and the label. Conversely, each time the

Discriminator rejects an attack sample, the Generator uses the

feedback to improve its strategy. Even though the Generator

always generates samples without the knowledge of seen

attacks (ground truth), the overall training of our AM-

GAN is supervised because real attack samples are used

to train the Discriminator. As the Generator gets better

at producing realistic attack samples, the Discriminator

gets better at telling generated samples from original data.

Moreover, as the Discriminator gets better at detecting a

certain evasion strategy, the Generator is forced to explore

additional strategies, exposing the Discriminator to them,

further improving its robustness. Both models continue to

improve simultaneously.

Integrating Labels. Our AM-GAN (Figure 5) can also

determine the kind of attack sample it generates. In a simple

GAN, there is no means to control the attack type; utilizing a

conditional GAN (CGAN) allows us to customize properties

of samples for each attack class. Our Discriminator learns to

accept matching pairs from the seen database while rejecting

pairs that are mismatched and pairs that are produced by

the Generator. Our final Generator is capable of producing

realistic microarchitectural attack samples for each attack

type we give a label to. We enter the descriptive features

of an attack into our Generator and have it output a range

of matching samples, expediting the process of adversarial

attack sample generation. In Section V-D we introduce a

metric to measure the semantic loss for generated attacks

and visually verify this capability of our AM-GAN.

B. Attack Sample Generation
Figure 5 depicts a block diagram of our AM-GAN

architecture and it’s training process (see Algorithm in

Figure 4). In this section we explain the detailed steps of

our training algorithm.

Training the Generator: For each training iteration:

• The Generator takes a new random noise vector z and

an attack type label e.g., spectre-RSB-type attack. The

Generator generates an example x� that strives to be both

an adversarial attack (e.g., looks like a safe program) and



Figure 5. EVAX HW Detector Training Diagram

a convincing match for its label.

• The Discriminator network classifies x� into 0/1. One

indicates a match with seen sample-labels from the dataset

and zero indicates unmatched sample-labels and generated

sample-labels.

• The classification error of the Discriminator will be

computed and backpropogated to update the Generator

weights, seeking to maximize the Discriminator’s error.

Training the Discriminator: For each iteration:

• We choose a seen program sample x from the training

dataset with its associated label.

• Generator gets a new random noise vector z and label

describing the attack type and synthesizes an adversarial

example x�.

• Discriminator receives the seen example x and label, the

adversarially generated sample-label x� and the label that

was used to generate them.

• For both examples the Discriminator outputs a probability

indicating whether the input example was seen data from

the dataset, matching its label pair or unmatched pairs.

• The classification error of Discriminator is computed and

backpropogated to update its weights, seeking to minimize

classification error.

• The training ends with our AM-GAN reaching Nash

equilibrium, meaning that at this point the Generator

produces fake examples indistinguishable from seen attacks

in the training data, and the Discriminator can at best

randomly guess whether a particular example is a seen

attack or a generated one.

C. Training the Hardware Detector
It is important not to confuse our Discriminator with

our final Detector. We emphasize that we can not use this

Discriminator as the attack detector directly. While they

are both classifiers, the Discriminator adapts to answer a

different, although related, question: whether a generated

attack sample is fake or real (seen attack or generated). It

does not perform well as a Detector whose goal is to classify

suspicious vs. safe activity. After reaching a stable error (it

is hard to achieve Nash equilibrium) we perform the process

of hardening our actual detector using AM-GAN:

• We feed the trained Generator with each attack type

Figure 6. Part of the Gram matrix during leakage phase for two attacks and
an attack sample generated by our framework with the label SPECTRE-RSB
– the darker color represents larger values. Attacks (B) and (C), similar in
type, have similar Gram matrices. Even though the values of the features
may be very different, the Gram matrix–a measure of the correlation between
pairs of features–is similar.

from the training set (conditioning inputs) and collect the

generated examples, using them to augment the training

database. The examples produced by our Generator are

adversarial attack samples that carry the footprints of

microarchitectural attacks but are very hard to distinguish

from benign programs.

• We retrain our hardware detector with the augmented

database. The generated examples which consistently fool

the Discriminator are used to train our EVAX, thereby

hardening it against such evasive attacks.

D. Interpretability & Quality measure for the Generated
Samples

In AM-GAN, just by looking at the two loss functions it

is unclear when we’ve actually finished training, since when

one gets better the other one gets a larger loss. In principle,

Nash equilibrium gives us a reasonable stopping criteria but

in practice reaching equilibrium is difficult. To cover the

adversarial space, we would want to start collecting training

data from the generator when the generated examples are

different enough from the seen data in values but belong to the

same class. As explained in Section II, several basic blocks

represented as misused or under-utilization are required to

be present simultaneously for attacks to build a side channel.

So we want to score samples based on the presence and

approximate values of low-level microarchitectural states

required for successful construction of a channel, leakage,

and recovery of each type.

Our solution is based on the observation that while one

attack and its evasive version have different distribution of

instructions they share commonalities in micro-arhitectural

state during different phases of the attack. We want every

new attack generated by AM-GANs Generator, conditioned

by an attack type (label), to have some common correlation

patterns during leakage between features (mutual correlation

pattern) with the seen example of the attack category. So we



define a Gram matrix that contains the dot product between

all possible feature pairs.

Gram Matrix. To numerically measure how often two

feature maps are present together, we multiply the values

of two vectors in each position and sum the results. If the

resulting value is high, the features are highly correlated.

Figure 6 shows the Gram matrices for three features for

each of the attacks. The ribbons on the top of Figure 6

are the program map. Each pixel shows the value of the

microarchitectural features over time. The bottom part of the

Figure shows correlations between three chosen features.

Microarchitectural Leakage Snapshot (Visualization). For

example, to generate the attack (C) in Figure 6 we have fed

the model with a spectre-RSB condition. We were able to

visually check that EVAX is working as expected since the

Gram matrices for the three features in attack (B) and (C)

match but (A) and (C) mismatch since attack (A) is meltdown

and (B) is spectre. While leakage style is similar, the feature

maps on the other hand for attack (B) and (C) are different –

verifying that AM-GAN found another variation of the same

attack type matching a different binary.

Interpretability of Features. Visualization of AM-GAN

generated samples also helps the designer to identify and

interpret the highly correlated features. For example, we

can see that the features Conflicts in Instruction Queue and

SquashedLoads fire strongly together in Meltdown but not

in Spectre-RSB and the generated attack (C). Conversely

Speculative Instructions Added often fire strongly together

in Spectre-RSB and the generated attack (C). We can

visually see that Meltdown-type samples rely on Conflicts

in Instruction Queue (OoO execution). We see that squashed

loads in Speculative attack samples generated are caused by

speculation not exceptions. These examples verify that our

AM-GAN framework is trained long enough to represent the

continuous target distributions of attacks from which we can

sample for training EVAX. This is a powerful tool that can

be used for further analysis and tuning of the features of

the final product and for developing mitigations of future

attacks.

Figure 7. Attacks Style Loss during AM-GAN training.

Attack Quality Measure. To calculate the attack style loss,

we calculate the Gram matrix (GM) for a set of features

for the base and generated attacks and then compare their

similarity using sum of squared errors. Attacks (B) and (C)

which are similar in type, will have similar Gram matrices

resulting in leakage style loss near zero. Algebraically, the

attack leakage style loss (LGM) between the base attack (B)

and generated attack (G), can be written as follows:

LGM(B,G) =
1

4αN2 ∑
i j
(GM(B)i j−GM(G)i j)

2

Where N is the number of features and α is a constant.

In Figure 7 we can see that attack footprint style loss (LGM)
reduces with each training iteration–the output becomes

stylistically closer to the type of the attacks that it is labeled

to produce — meaning as the training epoch increases, the

quality of the generated attacks gradually becomes higher.

We monitor this metric as AM-GAN is being trained

and start collecting training data when the absolute value

of the (LGM) for our generated examples becomes quite

small (0.1± 0.006) indicating the sample represents the

microarchitectural state of leakage related to the attack type.

We visually verified the quality and semantic consistency of

one example generated of each attack type in our database

before starting to collect samples to augment our dataset.

VI. HW DESIGN

A. Feature Engineering
We want to achieve accuracy comparable to a deep neural

network with a Security Friendly (fast classification) &

HW Friendly (light) model (shallow/linear neural network).

Simple models can provide classification fast enough to detect

transient attacks before leakage. However, we also find that

such simple models are capable of generating highly accurate

predictions.

Solving a multi dimensional problem with a simple
architecture. We want to use the same simple (e.g.,

perceptron) classifier PerSpectron uses to classify many more

categories of novel attacks that the previous model fails to

learn, such as LVI-type. Our solution is to add Dimension

to the input space. Introducing new performance counters

and monitoring a large set of microarchitectural features

transforms a Non-Linearly Separable Space to Linear. This

allows a simpler architecture — no hidden layer is necessary.

This is because the capacity of an ML model depends on both

input space and the model itself. As illustrated in figure 8

higher dimension enables a simpler classifier. It seems that

there is a constant total value of classification Volume which

can be captured by the dimension of input space multiplied by

order of classification function (complexity); if you increase

the input dimensions, you can use a simpler classifier.

In order to expand the detection ability of the prior works

to more categories of novel attacks, we include more HW

performance counters (145 instead of 106) including 12 newly

engineered security-centric performance counters. These new

engineered features enabled the same linear model trained



for classifying 6 categories of attack to also learn 19 other

classes of attacks. Additionally, the new security performance

counters are created by an automated method of selection and

combining multiple signals originated from the performance

counters into one new, highly correlated counter for security.

Conducting this search by brute-force requires simulation

time that is intractable. For example to simply choose three

counters to combine out of 1160 one must test 259,476,920

possible combinations as most combination does not correlate

to the security anomalies. We automated this selection using

AM-GAN which can select any number of useful counters

(1,2,3,4,...) without the need of running all combinations. We

will explain this method (collapsing independent counters into

a smaller set and linearizing the network while maintaining

the accuracy) next.

Figure 8. Effect of added dimension (new performance counters for
security) on classification.

Automating Performance Counter Engineering with
GANs for Security. Performance Counters are designed for

tuning performance. Some of these performance counters are

correlated with security. Prior work [62] identified (manually)

complex performance counters such as Number of Clean

Evicts, that was shown to be useful in detection of stealthy

cache attacks (see Figure 9).

Prime+Probe

Flush+Reload

Flush+Flush

Cache Hit

Cache Miss

Stealthy

NotReused
Eviction Clean Evicts

Solved

Figure 9. Complex HPCs for detection of stealthy cache attacks.

In this work we use the hidden nodes from our trained

AM-GAN Generator to automatically engineer new counters

for security. The hidden nodes receive the information from

the upper layer and processes it. Then, the obtained value

is sent to the next layer. The output layer will also process

the information from the hidden layer and give the output.

The top weights with largest absolute value dominate the

instantiation of each layer. We look at hidden nodes that are

connected to the first layer. We sort the weights of the hidden

layer of the network and select the top 12 nodes connected

to the input HPCs. We then define the Boolean AND Logic

of connected HPCs to that node as a new HPC specifically

engineered for Security. These are different than 133 highly

correlated features that we already use (27 more than prior

work). See figure 10.

Spectre PHT

Spectre BTB

Spectre RSB

Meltdown

DirectBrMiss
Stealthy

IndirectBrMiss
Stealthy

RASIncorrects
Stealthy

SpeculativeLDs
Stealthy

SquashedLoads
SpecLoads Committed Maps Undone

SpecLoadHitsInWrQ
SquashedLoad

Squashed Bytes Read

from WR Queue

Solved

Solved

Figure 10. Complex HPCs for detection of stealthy Speculative and
Meltdown type attacks.

An example of these engineered features is SquashedBytes-
ReadFromWRQu. This feature is equivalent to a node in the

third layer of our AM-GAN generator combining the signals

from two nodes (1) Spec Loads Hit in Write Queue and

(2) number of Squashed Loads with heavy weights. Spec
Loads Hit in write Queue (itself a combination of two HPCs)

and Number of Squashed Loads with heavy weights are

already availble HPCs. We then merge these two signals into

one to engineer a new signal we call SquashedBytesRead-
FromWRQu, which can easily be implemented in the CPU

with minimal logic. We found this new HPC specifically

exposes security vulnerabilities in the transient domain. For

instance, as shown in Figure 11, we show that this new HPC

detects both MDS and LVI attacks.

CacheOut

LVI

FallOut

Squashed Load
Stealthy

lsq.forwLoads
Stealthy

ConflictingLDSt
Stealthy

SpecLoadsHits
SquashedLoad Squashed ReadWrQ

Solved

Figure 11. Complex HPCs automatically engineered capable of detecting
unseen MDS-type and LVI attacks.

Replicated Feature Detector. We also use the entire space

by replicating mutually correlated features. Prior work

suggested use of Replicated detectors to simplify the problem

of detection for perceptron-based detectors. The idea is to not

disregard the mutually correlated (redundant) features and

instead replicate them in the processor i.e., different stages



of pipeline, buses, etc. They showed that if a feature vector

was useful in detecting one target (seen variant), it is likely

that a similar feature detector in different positions in the

pipeline can detect the evaded information (unseen variant).

Replicated feature vectors also allows each patch of program

to be represented in several microarchitectural ways–making

the trained model resilient to several evasions. Feature

replication greatly reduces the number of free parameters to

be learned by the model– enabling a simple HW design for

fast classification. Replicated features also allows simpler

circuit for centralizing the signals as one signal can be

captured by another signal down or up the pipeline through

replicated feature detector design.

Perform the feature engineering offline Selecting replicated

features and engineering new features is done automatically

through sub-sampling the hidden layers in the DNN Generator

Network. To enable competitive performance with a shallow

NN we apply the above steps of feature selection, replication,

and feature engineering offline. This eliminates the need

for hidden nodes and makes our detector more resilient to

evasion. Figure 12 shows the overview of our framework.

Figure 12. EVAX Feature Selection (offline). Invariant Feature Engineering
using GANs.

# Security HPCs

1 Squashed Bytes AND Bytes Read from WR Queue
2 Committed Maps AND rename.Undone
3 iew.Mem Order Violation AND dtlb.rdMisses
4 lsq.squashedStores AND lsq.forwLoads
5 membus.trans dist::ReadSharedReq AND lsq.ignoredResponses
6 iq.SquashedNonSpecLD AND dcache.ReadReq mshr miss latency
7 rename.serializingInsts AND iew.ExecSquashedInsts

Table I
SUBSET OF NEW PERFORMANCE COUNTERS FOR SECURITY

ENGINEERED BY EVAX.

B. Hardware Overhead
We choose the perceptron neural network [47] because of

its speed and small footprint. We also keep our hardware as

similar to PerSpectron as possible to facilitate comparison.

Our training method can potentially improve the robustness

of any ML based detection method. See section VIII-D for

the result of training on AM-GAN samples for a DNN. A

diagram of a Perceptron-based detector in the system is

shown in Figure 13.

We construct a quantized desired response d(n) to a

perceptron: d(n) is 1 if x(n) belongs to malicious class and 0

if x(n) belongs to the benign class. The perceptron computes

the weighted sum of the input patterns x(n) comparing it

to a threshold value. If the sum exceeds the threshold, the

output is +1; otherwise, it is 0. The central computation of

perceptron-based inference, the dot-product computation, is

performed using a modest circuit that adds partial products

sequentially. Since 0 and 1 are the only possible input values,

multiplication is unnecessary to compute the dot product. We

only need to add a weight when the input bit is 1. The sign bit

of the result gives the prediction. The weights are static since

Figure 13. Hardware Detector

EVAX uses offline training; they would only change based on

a new security patch. The dot-product is not latency-sensitive,

in contrast to the perceptron-based branch predictors [36],

[47] that must employ expensive adder trees to compute the

dot-product quickly. In our case, we need a single adder to

add or subtract serially each feature value. This will give

us a result in a few hundred cycles in the worst case.Since

the dot product can be computed sequentially, the hardware

overhead of perceptron consists of three main components:

1) logic to find the dot product of the 145 weights and

inputs, consisting mostly of a 9-bit adder and a register to

accumulate the partial product, 2) storage for the weights

and inputs, and 3) communication channels from the sources

of the inputs to the storage for the inputs. Weights are in

the range of [-2,1] and there are 145 of them. So the range

of the values is from -290 to +145, or 435 distinct values

that can be stored in 9 bits. The first two components have

almost negligible overhead. We estimate that the dot product



Architecture X86 O3CPU 1 core Single Thread at 2.0GHz

Core Tournament branch predictor, 16 RAS entries,

4096 BTB entries, LQEntries=32, SQEntries=32,

ROBEntries=192, fetch/disp/issue/commit 8 wide

numPhysIntRegs=256,numPhysFloatRegs=256

L1 I-Cache 32KB, 64B line, 4-way

L1 D-Cache 64KB, 64B line, 8-way

L2 Shared Cache 2MB bank, 64B line, 8-way, responsLatency=20

mshrs=20, tgtsPerMshr=12, writeBuffers=8

tagLatency=20, dataLatency=20

Table II
PARAMETERS OF SIMULATED ARCHITECTURE

computation logic would have a transistor count no more than

4,000, a tiny fraction of the logic used for a perceptron-based

branch predictor. The communication of the 145 signals from

the disparate parts of the processor core to the dot product

computation also has a very low cost in terms of area, but

the design complexity would be non-trivial. Still, the effort

should be no worse than that required to support performance

monitoring units ubiquitous in today’s processors that take

signals from all over the core to a central location. Note

that perceptron learning in hardware is practical for various

applications, including branch prediction, prefetching, and

replacement policies [85]. Recent microarchitectures from

Oracle [81], AMD (, e.g. Bobcat, Jaguar, Piledriver, Zen,

etc.), and Samsung [13], [36], [76] are documented to feature

perceptron-based branch predictors.

Weight & Feature Updates. EVAX is capable of being

updated via a vendor distributed patch. We anticipate newly

emerging attacks in the future will require updates to neural

weights and additions to the set of features being monitored.

This is a process similar to microcode updates which is a

secure feature available in current processors. With future
proofing in mind, we envision that all available hardware

performance counters will be connected to our detector

allowing us to update the neural weights and monitored

feature set as new attacks emerge. Evax inherits all of these

hardware advantages from PerSpectron.

VII. METHODOLOGY

General Infrastructure. We use the Gem5 [11] cycle-

level simulator to implement and evaluate the security and

performance of our end-to-end defense. We simulate O3CPU

which is a detailed and highly configurable out of order

CPU model (it does timing simulation for both CPU and

memory which is essential for simulating microarchitectural

side channel attacks). We simulate a full-System model

which include Operating System (Ubuntu 18.04 v. 4.8.13)

and underlying architecture (X86 ISA). Our methodology

should extend easily to other ISAs as well. Table II gives

the parameters of the simulated architecture.

Attack Generation in gem5. We use methods described in

[28] to successfully implement our attacks in gem5 for secu-

rity analysis. We also extended the supported instructions [1]

in gem5 to support new variants of microarchitectural attacks

such as Medusa. Our modified gem5 uses an extensible

DRAM simulator (Ramulator [51]) which runs as part of

a full-system gem5. By design, gem5 and Ramulator do

not include the management of Rowhammer effects, so

we developed a dedicated memory corruption module and

updated some existing components similar to [28] that stores

an associative map to maintain the link between virtual and

physical addresses. It determines the neighbors of each row

and establishes the affected ones, counts the number of

activations in each row since the last refresh, and affects

one bit-flip threshold to each row. It establishes if one bit-

flip occurs and modifies the affected cells in consequence.

These modifications make it possible to successfully run

existing Rowhammer attacks on an x86 platform associated

with classical DRAM. Additionally, we use the same disk

image to compare with real hardware, while keeping the

same binaries and libraries between the real world and the

simulated world. This makes testing attacks and ensuring

simulation of security features and side-channel sources (e.g.,

caches, DVFS) more reproducible and easier than on a real

platform. We create 30 Simpoints per benchmark in full

system mode. We warm up by 1M instructions and then

start execution from the precise checkpoints running 1M

instructions from each (30M total). We simulate attacks to

completion. Contrary to typical architectural studies, we

generate many more, smaller simpoints of benign codes,

since we need to train to detect short patterns quickly. From

gem5 we collect values of 1160 microarchitectural counters,

similar to prior work [62]. For these events, we measure

total number, cycles, rate, average, and distribution. For

counters, we maintain a maximum seen value for each

sampling simulation point. Statistics are normalized over

the maximum value of the counter.

Infrastructure for ML & HW Security Analysis. We

have extended our framework to collect statistics once every

100,000, 10,000, 1000 and 100 instructions and sample all

event counters for each program. We collect performance

counters from the Gem5 simulator to train our detector,

and measure prediction accuracy and leakage information.

We do not collect performance counters from SW because

the available number of performance counters in SW is

limited – Intel processors can monitor four at a time. Many

features correlated with malicious behavior are not available

in software. GEM5 is not limited to the commit state and

includes a rich feature set to monitor the speculative execution

state and we can compare with the state-of-art detector, which

relies on sampling a large set of microarchitectural features

at once available in Gem5. Using this tool, we collect multi-

dimensional time-series traces of applications. We use the

Keras library [20] to implement and train our AM-GAN. We

chose class Conditioned CGAN [63] as our reference GAN

network. We used the FANN C library [68] to implement the



final EVAX and PerSpectron models to work with Gem5.

Infrastructure for Performance & Security Analysis.
For performance analysis we have simulated two defenses

implemented in GEM5 for the Spectre threat model. For

Fencing we simulate a fence after every branch instruction.

for InvisiSpec [90] we add support to track when instructions

reach their visibility points, and issue load requests accord-

ingly. We add a SpecBuffer at each L1, and a SpecBuffer

for LLC. We modified GEM5 to bypass these defenses

during performance mode and switch back to them after

each true flag. We evaluate execution in secure mode for

10,000 instructions, 100,000 instructions and 1M instructions.

Workload We run individual SPEC CPU 2006 applica-

tions [41]. The workloads include C compression programs

modified to do most work in memory (rather than I/O),

optimization scheduling, Ethernet network simulator, high-

rank artificial intelligence programs, discrete event simulation,

gene sequence protein analysis, the A* algorithm, and more.

For transient attacks, we simulate Spectre-PHT [54], Spectre-

BTB [15], [53], Spectre-RSB [55], Spectre-STL [43], Melt-

down [59], three variants of Medusa [66], Rowhammer [30],

[50], SMotherSpectre [10], LVI (non-SGX environment) [87],

FallOut [14], Branchscope [27], Microscope(non-SGX en-

vironment) [82], Leaky Buddies attack (CPU side) [23],

RDRND [89], FlushConflict [89] and DRAMA [30]. For

cache attacks, we run Flush+Flush [39], Flush+Reload [91],

Prime+Probe [70].

Evasive Attacks. We generate 1.2M samples using our

automated attack generation tools. We use Transynther [66],

TRRespass [30] and Osiris [89] for automatic attack genera-

tion. For our manual evasive attacks experiments, we applied

techniques in malware [4], [54] to produce 29 attacks and

400,000 attack samples that can evade the state of the art

hardware detector [62]. We produce a total of 257,066 attack

samples (and 70,000 benign program samples to balance the

data) using AM-GAN at each Cross Validation Fold.

Cross Validation Setting. We use K-fold cross validation for

measuring mean accuracy on unseen attacks. At every fold,

we remove all the samples belonging to one attack in the test

set so that they are not used for model selection or AM-GAN

training. For transient execution attacks, to ensure EVAX

detects the leakage and injection channel of the attacks, we

also exclude the samples from recovery/transmission phase

(check-pointed in our database) from the testing set of each

fold. We use a set of fixed features. We don’t select new sets

of features whenever we exclude a sample, but we retrain

the weights at each fold.

VIII. SECURITY AND PERFORMANCE ANALYSIS

In this section we discuss the security provided by EVAX.

We report the robustness of detector against new evasive

technologies. We show the performance of detector for

defense against AML attacks, after retraining the detector

on samples generated by these tools. We present detection

accuracy for out-of-sample-attacks (zero-day setting). We

then present the end-to-end solution with false positive and

false negative results and with overall performance results

compared to current always on mitigations.

A. End-to-End Performance Results for Zero Leakage

In this section we present results for ML detectors trained

on all the attacks in our dataset. To guarantee security,

EVAX is tuned to have very high sensitivity. Therefore

it detected all of the attacks in our training set before

leakage. Figure 14 shows the performance of the adaptive

architecture enabled by EVAX compared, to PerSpectron and

InvisiSpec. We can see that the IPC for InvisiSpec is lower

than all the adaptive policies most of the time. Perspectron

performs slightly better than InvisiSpec but still at very low

IPC. EVAX keeps the IPC above 0.85 in most regions for

mitigating Spectre (EVAX-SpectreSafe). IPC drops slightly

for EVAX-FuturisticSafeFence which Fences all the loads.

This architecture mitigates even the most dangerous class of

microarchitectural attacks (e.g., LVI) with an overhead still

significantly lower than prior mitigation techniques that are

less aggressive.

False Positives and Negatives (for Zero Leakage). Figure 15

shows EVAX provides 85% improvement in False Positives

(0.27 FN to 0.034) and 72% improvement in False Negatives

(0.11 FN to 0.03). EVAX has 0.034 FP in every 10K

instruction, which is 4 FPs in every 1M instruction. This is

a practical False Positive for deployment. This number is

0.0005 FP and 0.0001 FN for sampling every 100 instructions.

This result is for a model that is also trained on a dataset of

samples taken every 100 instructions. Our model’s accuracy

in detection of microarchitectural attacks increases by higher

sampling frequency which is expected since these attacks

perform their anomalous behaviour during the transient

window.

Performance Overhead (for Full Security Coverage). For

end to end results we turn on mitigation at every true flag by

our detector and we execute 1M instructions in secure mode

to deactivate possible attacks. We only measure performance

of benign program since performance of malicious programs

is not a concern. We evaluate performance against hypotheti-

cal Futuristic Attacks Model that can exploit any speculative

load and Spectre Model that can exploit speculative loads

follow an unresolved control-flow instruction [90]. Figure 16

shows an end to end defense performance comparison. In the

figure, Fences-FuturisticSafe simulates a fence before every

load instruction, FuturisticSafeSpec is InvisiSpec working

under Futuristic threat model. EVAX-FuturisticSafe enables

Fences-FuturisticSafe and EVAX-SafeFence enables InvisiS-

pec. EVAX-SpectreSafe simulate a fence after every branch

instruction. Figure 16 shows that EVAX reduces Fencing

overhead for Spectre mitigation from 74% to 3.46% (95%

reduction). EVAX reduces InvisiSpec performance overhead

for spectre mitigation from 27% to 1.26% (95% reduction).



Figure 14. Performance (IPC) of an adaptive architecture with EVAX (vertical axis), compared to Perspectron and InvisiSpec. With EVAX, we also
examine increasingly conservative fencing schemes to anticipate future attacks.

Figure 15. False Positive (FP), False Negative (FN) Distribution

Figure 16. End to end Defense Performance Comparison

We show that EVAX reduces PerSpectron’s performance

overhead by factor of 6 for Spectre Fencing and by a

factor of 4 for Futuristic (including LVI) mitigation. We

show that EVAX reduces Fences overhead for Futuristic

attack mitigation from 209% to 10% (95% reduction). EVAX

reduces InvisiSpec overhead for Futuristic attack mitigation

from 75% to 4% (94% reduction).

B. Resiliency Against New Evasive Tech
In this experiment, we have set aside one third of the

samples from our dataset for test and both detectors are

trained on the remaining 2/3 of the attack samples in our

dataset. None of the detectors are trained on the attacks

generated by the automated tools [30], [66], [89]. Figure 17

shows PerSpectron under the attack by fuzzing tools that

break even the latest Intel processor. These tools include

Automated Rowhammer attacks (TRRespass), Automated

fault-based attacks (Medusa), and Automated timing based

attacks (Osiris). We evaluate EVAX and PerSpectron on 1.2

Million attack samples generated by these powerful tools.

We tune the EVAX output threshold to achieve detection

resiliency as measured by the ROC curve. The average Area

Under the Curve (AUC) of 0.797 for PerSpectron improves

to 0.985 for EVAX (23.5% improvement). If we retrain

the ML model on the same evasive tools, the accuracy

on the adversarial attacks that evades the state-of-the-art

plateaus at 78% using Automated Attack Discovery Tools.

The accuracy improves to 93% with EVAX (where leakage

= Zero, FNs before leakage. ) AM-GAN generated samples

effectively cover the gap between PerSpectron classification

boundary and the Microarchitectural attack leakage window

(see Figure 18).

C. K-fold Cross Validation Setting
One of the main differences between attack samples

generated by our AM-GAN and fuzzing approaches is that

it tells the model that there are multiple correct answers, i.e.
multiple purturbation mechanisms or variations of a same

attack, including those which haven’t been seen (fuzzing

is constrained by only a limited set of perturbations). This



Figure 17. Resiliency (ROC curve) Against 1.2M Evasive Attacks

aligns with the objective of seeking lower generalization
error, also known as the out-of-sample error or the risk.

Generalization error is the conditional probability of correct

prediction under an unknown state of parameters of the data

generating mechanism, Figure 19 shows the classification

error for EVAX, PerSpectron and PerSpectron hardened with

sampling from the fuzzing tool (P.Fuzzer) in a zero day setting

(K-fold cross validation). Evax drops the mean generalization

error for PerSPectron, even when hardened by Fuzzing tools,

by an order of magnitude.

EVAX is exposed to not only many attack samples but also

many generated benign program samples through AM-GAN

training of which represent comprehensive combination of

normal utilization of micro architectural component that exist

in the safe programs. While AM-GAN differentiate different

attack types to generate samples of each for training, our final

classifier is binary. Everything that is not microarchitecturally

benign is classified as a microarchitectural attack. So when

the system learns a very large corpus of safe behaviour it

improves its ability to identify many anomalous activities

in regards to microarchitectural utilization which are mal-

utilized by attacks. Because AM-GAN generates a large num-

ber (theoretically indefinite) samples of benign and malicious
programs through the adversarial game setup, it eventually

learns many of the constraints and functionality rules of the

pipeline, and augments this knowledge to the detector. For

example, consider a feature PendingQuiesceStallCycles in

fetch stage (Q) which is invariant to all kind of stalls down

Figure 18. Filling the adversarial space. Increasing the accuracy on AML
attacks. At 93%, leakage is Zero. Thus all attempts to evade the detector
disabled the attack.

in the pipeline, e.g., flush, misses, and traps. V = [ f ,m, t]
shows the one hot representation of those counters. All of

these stall signals propagate backwards to the fetch stage and

are accumulated into the counter Q. EVAX’s benefit comes

from the AM-GAN Generator which learns to generate all

possible combinations of input vectors V that trigger this

invariant feature Q. While the classical training (PerSpectron)

learns the first two of three features that trigger Q. EVAX

does draw the full connection between the third feature

t (traps) and Q automatically through training on benign

program samples generated by AM-GANs (new combination

of seen behaviours into one that is not seen), allowing it to

generalize to other fault-based attacks such as LVI (reverse

of meltdown), Medusa and all evasive attacks generated by

Transynther that PerSpectron fails to detect. . We are able

to see that the weight with value approximately 0 increases

to value 2 as AM-GAN trains on benign samples enabling

the model to learn the structure of the pipeline. We see this

because Hyperplanes/perceptron are easy to understand and

the first major step to cracking open a black box of deep

learning.

Additionally, EVAX detects the RDRAND covert chan-

nel [89] with 95% TPR detection when removed from the

training set. Weber et al. [89] showed that this attack is not

easily detected nor prevented by any of the current software

approaches [73] [45] [18] [42]. Evax also detects FlushCon-

flict in a Cross Validation setting, a microarchitectural kernel-

level ASLR (KASLR) bypass that is not mitigated by any of

the current hardware fixes [89], with 97% true positive rate

(TPR) for EVAX and 63% TPR for Perspectron. This attack

works even on the newest Intel Ice Lake and Comet Lake

microarchitectures, even with all known mitigations in place.

We also consider the Medusa attack [66], a recent Meltdown-

style attack that uses cache indexing, unaligned store-to-load

forwarding, and shadow REP MOV in its different variations.

Note that Medusa evades PerSpectron by completing its

meltdown basic block prior to detection. EVAX detects all the

meltdown-based steps of this attack with 98% true-positive

rate (TPR) detection for EVAX and 38% TPR for Perspectron,

demonstrating EVAX’s robustness against advanced unseen

meltdown-style and MDS attacks.

Interestingly, EVAX’s main contribution is the reverse

of prior works. PerSpectron mapped high-dimension data

to low-dimension [ f ,m] → V (classification), while AM-

GAN’s Generator maps low dimension data to high dimension

V → [ f ,m, t] (generation). This cross-validation experiment,

when crafted carefully, can also test EVAX’s increased ability

to detect zero-day attacks. For example, EVAX can generalize

to detect DRAMA [30] with high accuracy (99% TPR) even

when it is excluded from the training set, while DRAMA

evades PerSpectron. Highly correlated features that are

triggered during TRRespass detection include: (1) selfRe-
freshEnergy, (2) bytesPerActivate, the number of accessed

bytes per row activation in DRAM, (3) bytesReadWrQ, the



Figure 19. K-fold Cross Validation Setting

number of DRAM read requests serviced by the write queue.

None of these attacks were included in the EVAX’s training

set at the fold they were being tested, showing EVAX could

generalize to these attacks. EVAX cannot generalize to all

zero-day attacks. MicroScope, Leaky Buddies (CPU-side) and

SMotherSpectre all evade detection (leak before detection)

when not part of the train set. While not perfect, of course,

Evax is a clear advance in the state of the art for detection

of zero-day attacks. However, if we retrain EVAX with the

samples held out from MicroScope, Leaky Buddies (CPU-

side) and SMotherSpectre, we can detect them with 99.3%,

99.0% and 99.7% accuracy indicating that there is a subset

of shared features but not enough to allow timely detection

in a cross validation setting. This is why it is still important

to provide the ability to update the training and feature set

of the the detector when such feature-novel attacks appear.

D. Improving Other ML Detectors.

We focus on perceptrons because of their advantages for

hardware implementation, fast detection and interpretability.

However, the techniques in this paper are applicable to a

much wider range of ML solutions for attack detection.

Figure 20 shows EVAX’s training improves a 16-layer deep

neural network’s accuracy significantly (range of 0.57-0.90

for traditional training to 0.95-0.99 for EVAX training). Of

particular significance is that our AM-GAN training enables

a 16-layer neural network to outperform a 32-layer with it.

The effect of adding layers in traditional training, not only is

not statistically significant but also reduces the accuracy in

some cases (Median of 85 for 16 Layer to 77 for 32 Layer).

This is due to low quality training data. One of the challenges

in ML detector design for adaptive architectures is noise in

the training data. For example, while the program phases can

be check-pointed in code for reducing noise related to benign

and malicious phases of programs, the syscall itself adds

noise to the attack sample. The CGAN EVAX framework

is able to produce high quality, low-noise data for various

types of attacks. This can remove the effect of noisy data

and enable the capacity of deeper neural networks. One

general take away is that increasing the complexity of neural

networks without having a good set of training data can lead

to statistically significant reduction in accuracy, as we see in

Figure 20. On the other hand, higher quality training data

can significantly improve the capacity of shallower networks

as the accuracy of one layer NN with EVAX training is

significantly higher than even a 32 layer NN with traditional

training for all workloads (Range 0.57-0.90 for 32 layer

compared to 0.88-0.99 for EVAX).

Figure 20. Improving other ML models with EVAX.

IX. CONCLUSION

EVAX proposes an end-to-end solution for runtime

detection-based security against Microarchitectural attacks.

We showed that code transformation techniques used in the

prior automatic attack generation works are not sufficient for

training an ML detector. This paper introduces a methodology

for generating attack samples automatically in the microarchi-

etctural layer rather than the code layer using GANs. The

samples significantly increase the robustness of both simple

and more complex microarchitectural attack detectors. EVAX

also provides an automatic method to widen and linearize

Deep NN by engineering features using trained GANs.

Multiple catagories of attacks are then classified by a single

hyperplane, which is fast and easily interpretable. We believe

that linearization is the first major step to cracking open a

black box of deep learning for systems. The high sensitivity

and specificity of EVAX and its fast, implementable HW

and interpretable design, makes it practical for deployment,

substantially lowering the high performance overhead of

current state-of-the-art microarchitectural mitigations.
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