
Bit-level Perceptron Prediction for Indirect Branches

Elba Garza
elba@tamu.edu

Texas A&M University and AMD

Samira Mirbagher-Ajorpaz
Tahsin Ahmad Khan

parisamir@tamu.edu

tahsinkhan@tamu.edu

Texas A&M University

Daniel A. Jiménez
djimenez@tamu.edu

Texas A&M University and

Barcelona Supercomputing Center

ACM Reference Format:

Elba Garza, Samira Mirbagher-Ajorpaz, Tahsin Ahmad Khan, and Daniel A.

Jiménez. 2019. Bit-level Perceptron Prediction for Indirect Branches. In The

46th Annual International Symposium on Computer Architecture (ISCA ’19),

June 22–26, 2019, Phoenix, AZ, USA. ACM, New York, NY, USA, 12 pages.

https://doi.org/https://doi.org/10.1145/3307650.3322217

ABSTRACT

Modern software uses indirect branches for various purposes includ-

ing, but not limited to, virtual method dispatch and implementation

of switch statements. Because an indirect branch’s target address

cannot be determined prior to execution, high-performance proces-

sors depend on highly-accurate indirect branch prediction techniques

to mitigate control hazards.

This paper proposes a new indirect branch prediction scheme that

predicts target addresses at the bit level. Using a series of perceptron-

based predictors, our predictor predicts individual branch target

address bits based on correlations within branch history. Our eval-

uations show this new branch target predictor is competitive with

state-of-the-art branch target predictors at an equivalent hardware

budget. For instance, over a set of workloads including SPEC and

mobile applications, our predictor achieves a misprediction rate of

0.183 mispredictions per 1000 instructions, compared with 0.193

for the state-of-the-art ITTAGE predictor and 0.29 for a VPC-based

indirect predictor.

1 INTRODUCTION

As object-oriented languages have become ubiquitous within soft-

ware application design, so have indirect branch instructions. Early

work by Calder & Grunwald [1] shows that programs written in

object-oriented languages like C++ contain many indirect branch

instructions, on average 23 times as many compared to C pro-

grams, due to polymorphism. Polymorphism [2] uses dynamically-

dispatched function calls implemented through indirect branches to

support dynamic subtyping. Some object-oriented languages may

generate a virtual function call for every polymorphic object call [3].

More recently, Kim et al. [4] examined Windows applications

on real hardware, showing that 28% of branch mispredictions were

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6669-4/19/06. . . $15.00
https://doi.org/https://doi.org/10.1145/3307650.3322217

due to indirect branches. For a some programs, indirect branches ac-

counted for almost half the mispredictions measured. Since indirect

branch instructions incur the same runtime misprediction penalty

as conditional branch instructions, it is imperative to have accurate

indirect branch prediction mechanisms in place.

Indirect branches are not just necessary for virtual function calls.

Other common program constructs like switch-case statements, jump

tables, function pointer calls, procedure returns, and interface calls

also depend on indirect branching. Indirect branch instructions are

inherently more difficult to predict than conditional instructions.

Rather than simply predict taken or not taken, an indirect branch’s

prediction requires predicting a specific target address value. As

an indirect branch instruction may lead to any number of different

known branch target values at runtime, its prediction is more difficult

than a simple decision between two values. Some control-flow breaks

caused by indirect branches are predictable. Kaeli and Emma’s

call/return stack [5] is shown to accurately predict procedure returns’

target address values.

Several software-based strategies have been proposed to reduce

the prevalence of indirect branch instructions in programs [6–10].

Such devirtualization techniques lower the rate of indirect branch

instructions by substituting them with one or more direct conditional

branches [11]. Unfortunately, these methods are costly, requiring

static analysis of the whole program [6, 12], extensive profiling [7, 8],

or a combination of both [9, 10]. Additionally, type inference for

C++ programs using static analysis is already a known NP-hard

problem [13]. As such, indirect branch instructions are inevitable

breaks in control flow that must be properly addressed. Section 2.1

talks about these software techniques in more depth.

An assortment of hardware-based techniques to predict indirect

branch instruction targets have been proposed [4, 6, 14–22]. These

predictors output a target prediction at runtime based on branch

history, i.e. target address values from previous branch executions.

The most well-known example of these is the branch target buffer, or

BTB [14]. Many hardware-based indirect branch predictors maintain

target values in dedicated storage [15–19, 21], which can account for

significant die area and lead to increased power consumption. Other

approaches take advantage of already-present hardware structures

to facilitate indirect prediction [4, 22]. Section 2.2 discusses these

hardware-based prediction strategies at length.

This paper introduces a new indirect branch prediction algorithm,

Bit-Level Perceptron-Based Indirect Branch Predictor (BLBP). It

uses branch history and perceptron-based learning [23, 24] to predict

individual target value bits. The processor accesses a specialized

BTB-like structure to select the target that matches most closely at

the bit level among all observed targets of the branch.

1

27

The predictor is competitive with state-of-the-art indirect branch

prediction schemes, reducing misprediction rates by 5% over IT-

TAGE [25] while maintaining the same hardware budget.

2 RELATED WORK

Control flow breaks due to indirect branch instructions can be mit-

igated by two main strategies. The first strategy requires software-

based schemes: profiling and compiler optimizations can learn from

programs to predict branch targets, or minimize the frequency of indi-

rect branches. The other strategy depends on hardware mechanisms

that predict branch target addresses dynamically. The following two

sections detail these strategies’ related work.

2.1 Indirect Branch Target Prediction Via

Software

Wall proposed the first methods to statically predict indirect branches

based on profiling [26]. Calder & Grunwald [6] also used static

profiling along with compiler-driven optimizations and hardware

modifications (see Subsection 2.2) to reduce C++ indirect function

call overhead. Aigner & Hölzle proposed compiler optimizations

that reduces the frequency of virtual function calls [7] using pro-

file driven type feedback and class hierarchy analysis [12]. Porat et

al. [10] introduced similar inlining optimizations. Roth et al. [27]

devised a virtual function call prediction technique which uses pre-

computation to perform target address computation before execution

time. Joao et al. [28] proposed Dynamic Indirect Jump Predica-

tion, using dynamic predication to handle hard-to-predict indirect

branches without prediction. Farooq et al. [29] proposed Value-

Based BTB Indexing, or VBBI identifies hard-to-predict indirect

branches through profiling and flags via an ISA format augmen-

tation, storing multiple targets for an indirect branch in the BTB.

Compiler-Guided Value Pattern (CVP) prediction by Tan et al. [30]

is similarly value-based and compiler-driven.

Software-based strategies are not free of hardware costs, how-

ever. Many works proposed above require supplemental hardware

structures (even if minimal) and/or explicit ISA support [6, 28–31].

2.2 Hardware Indirect Branch Prediction

The simplest target prediction hardware mechanism is the Branch

Target Buffer, or BTB [14], using the branch address to index and

cache a branch’s last-taken target address. The stored target ad-

dress is later fetched for target prediction. A BTB is sufficient for

monomorphic branches leading to just one target address, like di-

rect branch instructions. However, because indirect branches can

be polymorphic, or lead to different addresses, the BTB’s last-used

prediction strategy is often insufficient [16, 19]. Calder & Grunwald

improve this scheme using a 2-bit Branch Target Buffer[6] that re-

places a target in the BTB only after two consecutive mispredictions.

However, BTB accuracy remains poor for indirect branches.

Path-based history is also correlated with branch behavior [15,

32, 33]. Unlike correlation with pattern history [34–36], path-based

correlation uses the sequence of basic block addresses leading up

to a branch. Chang et al. [16] explored tracking both pattern and

path-based history in their indirect branch prediction scheme, the

Target Cache.

Driesen & Hölzle proposed Cascaded Predictors [18, 20] that

are a hybrid of two target predictors, where the first BTB-based

predictor acts as a filter to catch easy-to-predict branches, while

hard-to-predict branches are predicted by a second two-level adaptive

predictor. The multi-stage predictor [20] generalizes the cascaded

predictor.

Taking inspiration from work on conditional branch prediction [37],

Kalamatianos & Kaelite use prediction by partial matching (PPM)

for indirect branch prediction [19]. Seznec’s TAGE, ITTAGE, and

COTTAGE predictors [21] take inspiration from a PPM-like predic-

tor [38]. The TAGE predictor predicts conditional branch directions

while the ITTAGE predictor predicts indirect branch targets. The

COTTAGE predictor incorporates both a TAGE and ITTAGE pre-

dictor in one to predict both branch directions and targets. The pre-

dictors use geometric history lengths [39] to index several partially-

tagged predicting tables.

Kim et al.’s Virtual Program Counter (VPC) predictor uses a

hardware-based devirtualization technique to predict indirect branch

targets. VPC is based on the idea that a polymorphic branch instruc-

tion with T different known targets can be thought of as a series of T

individual direct branch instructions. The predictor attempts to “de-

virtualize” indirect branch instructions in hardware to predict which

of the T targets is the correct target output. VPC’s main advantage

is that, rather than use dedicated hardware, it reuses the existing

conditional branch predictor and BTB. The conditional branch pre-

dictor is queried and the BTB accessed using a sequence of “virtual

PCs” corresponding to at least the T targets of the indirect branch.

The first virtual PC to output a taken prediction (if any) has its BTB

target value output as the target prediction. Since the virtual PCs

are are visited in series, the worst case scenario of no taken target

may result in many wasted cycles. Sorting the targets by frequency

allows the average latency to be low. A disadvantage of the VPC

approach is that the conditional branch predictor and indirect branch

predictor rely on one central prediction component that cannot be

specialized to either task, but must be tuned to give good general

overall performance.

TAP prediction [22], predicts the address of a BTB entry that

contains the predicted target value. TAP predicts the BTB entry’s

address bit-by-bit using several small branch predictors (called sub-

predictors) fashioned from the main conditional branch predictor.

The idea is similar to BLBP, but TAP predicts the address of a BTB

entry, not the target address itself. Note that TAP prediction modifies

hardware to allow multiple different BTB entries for a single indirect

branch address.

2.3 Perceptron-based Branch Prediction

Jiménez & Lin [24] first proposed the perceptron predictor, which

bases its prediction scheme on the most basic neural-learning struc-

ture, the perceptron [23]. A single-layer perceptron is composed of

a vector of integer weights w0 . . .wn. The output of a perceptron is

computed as the dot product of the weighted vector with an input

vector, x1 . . .xn, where w0 behaves as the bias input. As such, the

perceptron predictor maintains a table of weighted vectors rather

than the more common saturating bits [14, 34, 40, 41].

To predict a branch outcome, a weighted vector is chosen by

indexing the table using the branch’s PC address. The dot product

2

28

Benchmark Source Number of Benchmarks Details of Workloads

SPEC CPU2000 1 252.eon

SPEC CPU2006 12 400.perlbench, 403.gcc, 453.povray, 458.sjeng

SPEC CPU2017 7 600.perlbench, 602.gcc, 623.xalancbmk

CBP-5 Competition 68 Industry-sourced workloads offered for CBP-5 by host Samsung. Benchmarks

are divided into two categories: MOBILE and SERVER. Trace lengths also fall in

two categories: SHORT and LONG.

Table 1: Description of the 88 workloads used for testing and evaluation. The benchmarks come from four sources, including a

Championship Branch Prediction competition.

Indirect Branch Predictor Implementation Configuration Total Hardware Budget

BTB 32K-entry, partially-tagged, direct-mapped branch target buffer 64 KB

VPC 32K-entry, partially-tagged, direct-mapped BTB with

Multi-perspective Perceptron Predictor for conditional branch prediction

128 KB

ITTAGE as described in the original paper [25] 64 KB

BLBP 64-entry, 64-way set-associative, partially-tagged IBTB,

256 10-bit local histories, 630-bit global history,

8 correlating-weights tables, and 128-entry region array

64.08 KB

Table 2: The implementation setups for the indirect branch predictors evaluated.

language. Since Java relies on virtual method dispatch by default, it

is not surprising to find many indirect branches in these traces.

Figure 6 shows the degree of polymorphism present in the traces.

Many benchmarks are dominated by monomorphic branches, but

many have a great number of indirect branches with multiple targets.

4.2 Simulation Setup

We use the branch prediction simulation infrastructure released for

the Championship Branch Prediction competition [53]. The simu-

lation infrastructure has been augmented with additional code for

a BTB and an assortment of indirect branch predictors including

BLBP. For conditional branch prediction, we use a hashed perceptron

predictor [44].

The appropriate metric for branch prediction studies is mispre-

dictions per kilo-instruction (MPKI). Unlike simple misprediction

rate, MPKI takes into account the relative frequency of branches

compared to other instructions. Previous work has demonstrated a

linear relationship between MPKI and performance [54]. Thus, it is

sufficient to measure MPKI to infer an impact on performance.

Table 2 gives detailed information on the indirect branch predic-

tors implemented for this study. We use a BTB as our indirect branch

prediction baseline. The baseline BTB is a 32K-entry cache indexed

by branch address and filled with the most recently observed branch

target for that branch address. This BTB is large compared with

recent examples from industry. For example, the BTB in Samsung’s

recent Mongoose processor has 4,096 entries [55]. Thus, this BTB

provides a practical upper limit on the accuracy of modern BTBs.

We implement the Virtual Program Counter (VPC) predictor from

Kim et al. [4] using a 64KB Multi-perspective Perceptron Predictor

(MPP) [47] as its underlying conditional branch predictor. The orig-

inal VPC implementation relies on global branch history to make

predictions for indirect branches. However, our implementation is

a hashed perceptron predictor that uses a set of 37 features to pro-

vide alternate perspectives on branch history. Our implementation

of VPC has a 32K-entry BTB for target storage. This modified VPC

gave an MPKI of 0.29 for indirect branches while maintaining a

low degradation of 2.05% in the prediction accuracy of conditional

branches.

Finally, we set up BLBP as described in Section 3. There are 8 in-

dependently accessed SRAM arrays for 8 different history intervals.

Each SRAM array has rows of 12 4-bit vectors implementing the

perceptron weights. There is a 630-bit global history and a table of

256 10-bit local histories. There is an indirect branch target buffer

(IBTB) consisting of 64 sets of 64 entries, each of which contains an

8-bit partial tag, a 7-bit region number, a 20-bit region offset, and a 2-

bit re-reference interval prediction [56] for replacement. The region

number and descriptor allow a compressed representation of targets

in the same manner as the ITTAGE predictor [25]. The total state

for the prediction tables, histories, IBTB, and region table is approx-

imately 64KB, allowing an iso-area comparison with the ITTAGE

implementation from the second branch prediction competition.

Each of the SPEC traces is a simpoint [57] of one billion instruc-

tions. The Samsung-sourced traces are of variable length averaging

in the 100s of millions of instructions. For our experiments we

measure branch target MPKI over each entire trace.

5 RESULTS

5.1 Overall Performance

Among the four predictor implementations, the baseline BTB pre-

dictor performed the worst, with an arithmetic mean of 3.40 MPKI

across the benchmarks. Next was VPC with a mean of 0.29 MPKI.

ITTAGE and BLBP rounded out our results with 0.193 and 0.183

MPKI, respectively. Thus, for the benchmark suite tested, BLBP led

to a 5% improvement in MPKI over the state-of-the-art.

8

34

A
ll optim

izations off

O
nly local history on

O
nly intervals on

O
nly selective updates on

O
nly transfer function on

O
nly adaptive threshold on

N
o intervals (G

E
H

L
 only)

N
o adaptive threshold

N
o transfer function

N
o local history

N
o selective update

A
ll optim

izations on

-5

0

P
e
r
c
e
n

t
M

P
K

I
 R

e
d

u
c
ti

o
n

-5

0

P
e
r
c
e
n

t
M

P
K

I
 R

e
d

u
c
ti

o
n

Figure 10: Effect of Optimizations

predictor the least, followed by using intervals instead of geometric

history lengths (GEHLs), and selectively updating only bits that

differ in targets. Using a non-linear transfer function provides a large

boost to the otherwise unoptimized predictor, bringing it within 1.7%

of ITTAGE. Adaptive training provides the largest boost, only 1.4%

higher MPKI than ITTAGE.

Now let us see what happens when turning off only one opti-

mization, keeping the rest. The biggest change occurs when using

GEHL histories instead of intervals; the improvement over ITTAGE

drops from 5.3% to 2.04%. Thus, in concert with the other features,

intervals seem to provide an important boost. Omitting selective

bit updates seems to hurt the least, lowering MPKI improvement

to 2.86%. However, omitting any of the optimizations produces a

significant reduction in MPKI improvement. Thus, the optimizations

seem to work synergistically (if not additively) to improve accuracy.

5.3 Effect of Associativity

The IBTB is a set-associative structure. Each set stores 64 targets

observed from indirect branches that hash to that set. Although, as we

have seen in Section 3.7, most branches have at most 5 targets, many

branches may hash to the same IBTB set causing collisions, and

some branches actually require many targets. Thus, the associativity

of the structure must be large enough to combat conflict misses

and to accommodate branches with many targets. Figure 11 shows

the effect on accuracy of varying the associativity of the IBTB,

keeping the number of IBTB entries the same at 4,096. A 4-way

IBTB gives an unacceptably high 1.09 MPKI. An 8-way IBTB cuts

the MPKI almost in half to 0.57. A 16-way BTB gives another large

improvement, down to 0.27 MPKI. With 32-way set associativity, the

IBTB yields an MPKI of 0.19, equivalent to ITTAGE. The 64-way

IBTB gives 0.183 MPKI, a 5% improvement over ITTAGE.

6 CONCLUSIONS & FUTURE WORK

In this paper, we introduced Bit-Level Perceptron-Based Indirect

Branch Predictor, or BLBP. BLBP predicts indirect branch targets’

select lower-order bits using perceptron-based learning. A selection

of known target addresses for the branch are gathered from the IBTB

A
sso

c =
 4

A
sso

c =
 8

A
sso

c =
 1

6
A

sso
c =

 3
2

A
sso

c =
 6

4
IT

T
A

G
E

0.0

0.5

1.0

M
P

K
I

0.0

0.5

1.0

M
P

K
I

Figure 11: Effect of Associativity

for comparison; the target address that matches closest with the

predicted bits is output as BLBP’s prediction.

We have shown BLBP to outperform the state-of-the-art. Using a

suite of 88 benchmarks with significant indirect branches, we show

BLBP improves upon ITTAGE’s prediction performance by 5%,

reducing MPKI from 0.193 to 0.183.

In future work we plan to improve accuracy by exploring features

beyond global and per-branch history. For example, the recently

proposed multiperspective perceptron predictor uses a variety of

control-flow features to improve accuracy [47]. We plan to reduce

the complexity of the computations involved. The original percep-

tron predictor was quite complex with a high latency, but follow-up

work reduced the latency through ahead-pipelining and other tech-

niques [42, 43, 59]. We are confident that the same sorts of tech-

niques can be applied to BLBP to achieve lower latency and power

while maintaining high accuracy. We plan to explore ways of avoid-

ing the high-associativity of the IBTB, perhaps using a hierarchy

of structures [18, 60]. We also plan to explore how BLBP might be

used to predict conditional branches as well as indirect branches as

VPC does, allowing consolidation of the two structures.

7 ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable comments

and feedback to improve the content and quality of this paper. We

thank Samsung for supporting this work through their Global Out-

reach Program. We also thank the National Science Foundation for

supporting this work through grant CCF-1649242. Portions of this

research were conducted with the advanced computing resources

provided by Texas A&M High Performance Research Computing.

10

36

REFERENCES
[1] B. Calder, D. Grunwald, and B. Zorn, “Quantifying behavioral differences between

c and c++ programs,” Journal of Programming languages, vol. 2, no. 4, pp. 313–
351, 1994.

[2] L. Cardelli and P. Wegner, “On understanding types, data abstraction, and poly-
morphism,” ACM Comput. Surv., vol. 17, pp. 471–523, December 1985.

[3] H. Srinivasan and P. F. Sweeney, “Evaluating virtual dispatch mechanisms for
c++,” Tech. Rep. Technical Report RC 20330, IBM TJ Watson Center, January
1996.

[4] H. Kim, J. A. Joao, O. Mutlu, C. J. Lee, Y. N. Patt, and R. Cohn, “Vpc prediction:
Reducing the cost of indirect branches via hardware-based dynamic devirtualiza-
tion,” in Proceedings of the 34th Annual International Symposium on Computer

Architecture, ISCA ’07, (New York, NY, USA), pp. 424–435, ACM, 2007.
[5] D. R. Kaeli and P. G. Emma, “Branch history table prediction of moving target

branches due to subroutine returns,” in [1991] Proceedings. The 18th Annual

International Symposium on Computer Architecture, pp. 34–42, May 1991.
[6] B. Calder and D. Grunwald, “Reducing indirect function call overhead in c++

programs,” in Proceedings of the 21st ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, POPL ’94, (New York, NY, USA), pp. 397–
408, ACM, 1994.

[7] U. Hölzle and D. Ungar, “Optimizing dynamically-dispatched calls with run-
time type feedback,” in Proceedings of the ACM SIGPLAN 1994 Conference on

Programming Language Design and Implementation, PLDI ’94, (New York, NY,
USA), pp. 326–336, ACM, 1994.

[8] D. Grove, J. Dean, C. Garrett, and C. Chambers, “Profile-guided receiver class
prediction,” in Proceedings of the Tenth Annual Conference on Object-oriented

Programming Systems, Languages, and Applications, OOPSLA ’95, (New York,
NY, USA), pp. 108–123, ACM, 1995.

[9] G. Aigner and U. Hölzle, “Eliminating virtual function calls in c++ programs,”
tech. rep., Santa Barbara, CA, USA, 1996.

[10] S. Porat, D. Bernstein, Y. Fedorov, J. Rodrigue, and E. Yahav, “Compiler opti-
mization of c++ virtual function calls,” in Proceedings of the 2Nd Conference

on USENIX Conference on Object-Oriented Technologies (COOTS) - Volume 2,
COOTS’96, (Berkeley, CA, USA), pp. 1–1, USENIX Association, 1996.

[11] K. Ishizaki, M. Kawahito, T. Yasue, H. Komatsu, and T. Nakatani, “A study of
devirtualization techniques for a java just-in-time compiler,” in Proceedings of

the 15th ACM SIGPLAN Conference on Object-oriented Programming, Systems,

Languages, and Applications, OOPSLA ’00, (New York, NY, USA), pp. 294–310,
ACM, 2000.

[12] J. Dean, D. Grove, and C. Chambers, “Optimization of object-oriented programs
using static class hierarchy analysis,” in Proceedings of the 9th European Confer-

ence on Object-Oriented Programming, ECOOP ’95, (London, UK, UK), pp. 77–
101, Springer-Verlag, 1995.

[13] H. D. Pande and B. G. Ryder, “Static type determination for c++,” in Proceedings

of the 6th Conference on USENIX Sixth C++ Technical Conference - Volume 6,
CTEC’94, (Berkeley, CA, USA), pp. 5–5, USENIX Association, 1994.

[14] J. K. F. Lee and A. J. Smith, “Branch prediction strategies and branch target buffer
design,” Computer, vol. 17, pp. 6–22, Jan 1984.

[15] R. Nair, “Dynamic path-based branch correlation,” in Proceedings of the 28th

Annual International Symposium on Microarchitecture, pp. 15–23, December
1995.

[16] P.-Y. Chang, E. Hao, and Y. N. Patt, “Target prediction for indirect jumps,” in
Conference Proceedings. The 24th Annual International Symposium on Computer

Architecture, pp. 274–283, June 1997.
[17] K. Driesen and U. Hölzle, “Accurate indirect branch prediction,” in Proceed-

ings. 25th Annual International Symposium on Computer Architecture (Cat.

No.98CB36235), pp. 167–178, Jun 1998.
[18] K. Driesen and U. Hölzle, “The cascaded predictor: Economical and adaptive

branch target prediction,” in Proceedings of the 31th International Symposium on

Microarchitecture, December 1998.
[19] J. Kalamatianos and D. R. Kaeli, “Predicting indirect branches via data com-

pression,” in Proceedings. 31st Annual ACM/IEEE International Symposium on

Microarchitecture, pp. 272–281, Nov 1998.
[20] K. Driesen and U. Hölzle, “Multi-stage cascaded prediction,” in Euro-Par’99 Par-

allel Processing (P. Amestoy, P. Berger, M. Daydé, D. Ruiz, I. Duff, V. Frayssé, and
L. Giraud, eds.), (Berlin, Heidelberg), pp. 1312–1321, Springer Berlin Heidelberg,
1999.

[21] A. Seznec, “A case for (partially) tagged geometric history length branch predic-
tion,” Journal of Instruction-Level Parallelism (JILP) Special Issue: The Third

Championship Branch Prediction Competition (CBP-3), vol. 9, February 2006.
[22] Z. Xie, D. Tong, M. Huang, X. Wang, Q. Shi, and X. Cheng, “Tap prediction:

Reusing conditional branch predictor for indirect branches with target address
pointers,” in 2011 IEEE 29th International Conference on Computer Design

(ICCD), pp. 119–126, Oct 2011.
[23] H. D. Block, “The perceptron: A model for brain functioning,” Reviews of Modern

Physics, vol. 34, pp. 123–135, 1962.

[24] D. A. Jiménez and C. Lin, “Dynamic branch prediction with perceptrons,” in
Proceedings of the 7th International Symposium on High Performance Computer

Architecture (HPCA-7), pp. 197–206, January 2001.
[25] A. Seznec, “A 64-kbytes ittage indirect branch predictor,” in Proceedings of the

JWAC-2: Championship Branch Prediction, June 2011.
[26] D. W. Wall, “Limits of instruction-level parallelism,” in Proceedings of the Fourth

International Conference on Architectural Support for Programming Languages

and Operating Systems, ASPLOS IV, (New York, NY, USA), pp. 176–188, ACM,
1991.

[27] A. Roth, A. Moshovos, and G. S. Sohi, “Improving virtual function call target
prediction via dependence-based pre-computation,” in Proceedings of the 13th

International Conference on Supercomputing, ICS ’99, (New York, NY, USA),
pp. 356–364, ACM, 1999.

[28] J. A. Joao, O. Mutlu, H. Kim, R. Agarwal, and Y. N. Patt, “Improving the perfor-
mance of object-oriented languages with dynamic predication of indirect jumps,”
SIGARCH Comput. Archit. News, vol. 36, pp. 80–90, March 2008.

[29] M. U. Farooq, L. Chen, and L. Kurian, “Value based btb indexing for indirect
jump prediction,” in HPCA - 16 2010 The Sixteenth International Symposium on

High-Performance Computer Architecture, pp. 1–11, Jan 2010.
[30] M. Tan, X. Liu, T. Tong, and X. Cheng, “Cvp: An energy-efficient indirect branch

prediction with compiler-guided value pattern,” in Proceedings of the 26th ACM

International Conference on Supercomputing, ICS ’12, (New York, NY, USA),
pp. 111–120, ACM, 2012.

[31] W. J. Ghandour and N. J. Ghandour, “Leveraging dynamic slicing to enhance
indirect branch prediction,” in 2014 IEEE 32nd International Conference on

Computer Design (ICCD), pp. 292–299, Oct 2014.
[32] C. Young and M. D. Smith, “Improving the accuracy of static branch prediction

using branch correlation,” in Proceedings of ASPLOS VI, pp. 232–241, 1994.
[33] C. Young, N. Gloy, and M. D. Smith, “A comparative analysis of schemes for cor-

related branch prediction,” in Proceedings 22nd Annual International Symposium

on Computer Architecture, pp. 276–286, June 1995.
[34] T.-Y. Yeh and Y. N. Patt, “Two-level adaptive training branch prediction,” in Pro-

ceedings of the 24th ACM/IEEE International Symposium on Microarchitecture,
pp. 51–61, November 1991.

[35] S.-T. Pan, K. So, and J. T. Rahmeh, “Improving the accuracy of dynamic branch
prediction using branch correlation,” in Proceedings of the Fifth International

Conference on Architectural Support for Programming Languages and Operating

Systems, ASPLOS V, (New York, NY, USA), pp. 76–84, ACM, 1992.
[36] T.-Y. Yeh and Y. N. Patt, “A comparison of dynamic branch predictors that use

two levels of branch history,” in Proceedings of the 20th Annual International

Symposium on Computer Architecture, May 1993.
[37] I.-C. K. Chen, J. T. Coffey, and T. N. Mudge, “Analysis of branch prediction

via data compression,” in Proceedings of the Seventh International Conference

on Architectural Support for Programming Languages and Operating Systems,
ASPLOS VII, (New York, NY, USA), pp. 128–137, ACM, 1996.

[38] P. Michaud, “A ppm-like, tag-based branch predictor,” Journal of Instruction Level

Parallelism, vol. 7, no. 1, pp. 1–10, 2005.
[39] A. Seznec, “Genesis of the o-gehl branch predictor,” Journal of Instruction-Level

Parallelism (JILP), vol. 7, April 2005.
[40] J. E. Smith, “A study of branch prediction strategies,” in Proceedings of the 8th

Annual International Symposium on Computer Architecture, pp. 135–148, May
1981.

[41] S. McFarling, “Combining branch predictors,” tech. rep., Technical Report TN-36,
Digital Western Research Laboratory, 1993.

[42] D. A. Jiménez, “Fast path-based neural branch prediction,” in Proceedings of the

36th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-

36), pp. 243–252, IEEE Computer Society, December 2003.
[43] D. A. Jiménez, “Piecewise linear branch prediction,” in Proceedings of the 32nd

Annual International Symposium on Computer Architecture (ISCA-32), June 2005.
[44] D. Tarjan and K. Skadron, “Merging path and gshare indexing in perceptron branch

prediction,” ACM Trans. Archit. Code Optim., vol. 2, pp. 280–300, September
2005.

[45] D. A. Jiménez, “Snip: Scaled neural indirect predictor,” in Proceedings of the

JWAC-2: Championship Branch Prediction, June 2011.
[46] A. Jaleel, K. B. Theobald, S. C. Steely Jr, and J. Emer, “High performance cache

replacement using re-reference interval prediction (rrip),” in ACM SIGARCH

Computer Architecture News, vol. 38, pp. 60–71, ACM, 2010.
[47] D. A. Jiménez, “Multiperspective perceptron predictor,” The Fifth Championship

Branch Prediction Competition (CBP-5), June 2016.
[48] D. A. Jiménez, “Strided sampling hashed perceptron predictor,” in Proceedings of

JWAC-4: Championship Branch Prediction, June 2014.
[49] R. S. Amant, D. A. Jiménez, and D. Burger, “Low-power, high-performance

analog neural branch prediction,” in Proceedings of the 41th Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO-41), IEEE Computer
Society, November 2008.

[50] Standard Performance Evaluation Corporation, SPEC CPU 2000,

http://www.spec.org/osg/cpu2000, April 2000.

11

37

[51] J. L. Henning, “SPEC CPU2006 benchmark descriptions,” SIGARCH Comput.

Archit. News, vol. 34, pp. 1–17, September 2006.
[52] J. L. Henning, “The SPEC CPU2017 benchmark package.”

https://www.spec.org/cpu2017/Docs/overview.html#benchmarks.
[53] The Journal of Instruction-Level Parallelism, The 5th JILP Championship Branch

Prediction Competition (CBP-5), https://www.jilp.org/cbp2016, June 2016.
[54] Z. Wang and D. A. Jiménez, “Program inteferometry,” in Proceedings of the 2011

IEEE International Symposium on Workload Characerization, November 2011.
[55] B. Burgess, “Samsung’s exynos-m1 cpu,” in Hot Chips: A Symposium on High

Performance Chips, August 2016.
[56] A. Jaleel, K. Theobald, S. S. Jr., and J. Emer, “High performance cache replace-

ment using re-reference interval prediction (rrip),” in Proceedings of the 37th

Annual International Symposium on Computer Architecture (ISCA-37), June 2010.

[57] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically charac-
terizing large scale program behavior,” in Proceedings of the 10th International

Conference on Architectural Support for Programming Languages and Operating

Systems, October 2002.
[58] The Journal of Instruction-Level Parallelism, The 4th JILP Championship Branch

Prediction Competition (CBP-4), https://www.jilp.org/cbp2014, June 2014.
[59] G. Loh and D. A. Jiménez, “Modulo path history for the reduction of pipeline over-

heads in path-based neural branch predictors,” International Journal of Parallel

Programming (IJPP), vol. 36, no. 2, pp. 267–286, 2008.
[60] D. A. Jiménez, S. W. Keckler, and C. Lin, “The impact of delay on the design of

branch predictors,” in Proceedings of the 33rd Annual International Symposium

on Microarchitecture (MICRO-33), pp. 67–76, December 2000.

12

38

	1 Introduction
	2 Related Work
	2.1 Indirect Branch Target Prediction Via Software
	2.2 Hardware Indirect Branch Prediction
	2.3 Perceptron-based Branch Prediction

	3 Bit-Level Perceptron-Based Indirect Branch Predictor
	3.1 Indirect Branch Target Buffer(IBTB)
	3.2 Perceptrons For Each Bit of the Target
	3.3 Training For Multiple Histories
	3.4 Predicting with Perceptrons
	3.5 Training Perceptrons
	3.6 Optimization Techniques
	3.7 Implementation
	3.8 Searching the BTB

	4 Testing Methodology
	4.1 Benchmarks
	4.2 Simulation Setup

	5 Results
	5.1 Overall Performance
	5.2 Effect of Optimizations
	5.3 Effect of Associativity

	6 Conclusions & Future Work
	7 Acknowledgments
	References

